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The interface between a spacecraft and its ground operations segment 
includes the flow of commands, configuration, and sequencing elements to 
the spacecraft, and the flow of telemetry and data products from the 
spacecraft. Creating and implementing a complete definition of this interface 
simplifies and standardizes mission operations, allowing easy sharing of 
operations personnel across missions. Early spacecraft featured a simple 
flight / ground interface (FGI) using hardware command decoding in the 
radio, driven by technological limitations of the time. Modern spacecraft use 
command and data handling (CDH) avionics on which flight software 
executes, which in turn controls and configures the mission, executes 
subsystem and instrument instructions, and implements critical fault 
protection actions. Deep space missions feature advanced operations 
software for running sequenced activities over a period of weeks, which 
allows them to function with only infrequent ground contact. This approach 
comes at the cost of increased complexity in the FGI, requiring expensive 
modifications to heritage flight software and ground systems. By hosting the 
interface in the radio instead of the CDH avionics, modern missions can 
approximate the FGI design simplicity of early spacecraft, with significant 
advantages for vendor competition, lowered costs, standardization of 
operations, and reduction of implementation risk. 

I. Mission Operations Domain 
ission operations for spacecraft involves both the uplink of products to the spacecraft and 
the return of mission data. Deep space mission operations may be viewed as a function of 

the mission objectives, and consists of three items, in priority order: 
 1. Collect science data to achieve the mission objectives 
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 2. Operate the flight system to collect science 
 3. Build, test, and deliver the flight system in order to have a platform to operate 

Collecting science to achieve the mission objectives (objective 1) requires successful operation 
of the flight system to collect the science (objective 2). The more operable the flight system 
design (objective 3), the simpler the operations team's job becomes. Operability therefore has a 
substantial impact on cost, risk, and data return [14]. 

Products radiated include, at a minimum, immediate commands that are interpreted by the 
spacecraft in order to perform an action. Deep space missions are subject to light speed delays 
that drive the need for autonomy. Therefore, those missions generally employ stored commands 
called sequences. Mission operations products are defined in the context of a Mission Operations 
System (MOS). The MOS includes a Ground System (GS) that assists users in deriving the 
products needed onboard the spacecraft, as shown in Figure 1. Products to be delivered to the 
spacecraft include commands, sequences, configuration information, and software patches.  

 

 
Figure 1: A simplified view of mission operations functions, showing the flow of data through the system 
 
Onboard the spacecraft, the GS interfaces to the command system and file system of the 

spacecraft in order to deliver products used onboard to produce science. Sequences execute 
commands from an onboard store based on time and, in some cases, events and conditions. The 
sequence store frequently takes the form of files to be loaded, as do configuration data which 
govern the low-level operation of various software tasks and hardware elements. By migrating 
some portions of the interface to the radio onboard, we will show that the adaptations required to 
the MOS and spacecraft in order to integrate them together can be virtually eliminated. 

II. Predecessor concepts 

A. Hardware commands 
A hardware command decoder translates commands received by the radio directly into 

actions aboard the spacecraft. Commandable spacecraft originally featured only hardware 
commands, wherein the bit stream arriving in the radio was tested by the hardware command 
decoder, and all spacecraft actuation was directly implemented: typically, the opening or closing 

commands, sequences, configuration data
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of switches and the setting of signals as shown in Figure 2 [13]. This uses the radio as the 
command subsystem, in essence hosting within the radio the flight-ground interface for control 
of the spacecraft. Commercially available radios had well-defined signal interfaces that could be 
connected to flight hardware, thereby standardizing the flight-ground interface on spacecraft 
using the same radio. 

 

 
Figure 2: Command path from radio to actuators through hardware command decoder 

 
Modern spacecraft generally reserve hardware commanding for critical spacecraft instructions 

to be executed in the event that flight software is no longer responsive. These critical commands 
may include resetting components like the CDH or radio, selecting hardware sides where 
redundant hardware is available, or modifying critical memory registers. 

B. Modern flight software architecture with software commands 
On modern spacecraft, the presence of a command and data handling (CDH) unit running 

flight software typically dispatches the majority of commands, using software interpretation of 
standardized command packets (e.g. CCSDS packets). By centralizing the command 
interpretation within the flight software, commands of considerable complexity may be 
implemented, to which the flight-ground system must be adapted. 

 
Figure 3: Command path from radio to software 

 
 Figure 3 illustrates the data flow paths of a CCSDS command packet from uplink, the 

extraction of data, and the dispatch of this data by the flight software to the appropriate software 
component for execution. Flight software executing on the CDH obviates the need for an 
extensive set of hardware commands, instead utilizing a software command dispatch system. 
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C. Virtual Machine Language sequencing 
Sequencing is the execution of commands from a store onboard the spacecraft. Spacecraft 

featuring simple sequencing execute commands according to absolute time, i.e. when a specific 
time comes to pass. More modern sequencing typically also allows relative time sequencing, 
wherein the execution of a statement is dependent on the completion of a prior statement rather 
than an absolute time value. Modern sequencing systems may also allow reusable sequence 
elements, conditional execution, and event reaction. 

Virtual Machine Language (VML) is an advanced sequence processing language specifically 
tuned to the needs of spacecraft operations. It contains sufficient functionality to allow operators 
to implement solutions that in the past would have required the development of expensive, 
mission-unique flight software. The language is simple enough that it avoids most of the 
problems associated with typical flight software developed in C, C++, or Ada, while providing 
enough flexibility to implement elegant, straightforward operations. 

VML does not run on the "bare iron" of the host microprocessor. Instead, the language is 
implemented as a byte code binary, and is interpreted at runtime by onboard software known as 
the VML Flight Component. This approach provides a safe sandbox for execution, eliminating 
issues such as race conditions, out-of-bounds memory accesses, division by zero, type coercion 
errors, or missing functions. It also simplifies deployment to a wide variety of processors. 

Virtual Machine Language development started in 1997. Six versions have been implemented 
so far. VML has been used or is in use on fifteen NASA flight missions and technology 
demonstrators to date, including Stardust[2], Genesis, Mars Odyssey, Spitzer Space 
Telescope[3][4], MRO, Dawn, Phoenix[11][12], Juno, GRAIL, MAVEN, OSIRIS-REx, InSight, 
and the Resource Prospector lunar regolith analysis instrument package. A timeline of software 
development and use over the last 20 years appears in Figure 4. 

 
Figure 4: VML heritage, 1997 - 2018, 88 flight years, showing VML versions used on a variety of 

NASA deep space missions, from original VML 0 through commercialized VML 3.0 
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The VML flight execution environment [1] provides multiple threads of parallel execution 
within one operating system task context using a data-driven construct known as a sequencing 
engine. VML allows an extensive set of variable types, including integers, floats, Boolean 
values, strings, and arrays. Arithmetic and trigonometric calculations, logical manipulations, and 
vector/matrix operations are available for use. Conditionals may also be used to make decisions 
based on local values at runtime. WHILE and FOR loops perform iteration. 

VML sequences exist as named functions which can accept parameters and have local 
variables. Functions may be packaged together into a single file that is loaded onto an engine in 
order to associate runtime behavior or to provide libraries of commonly needed services. Objects 
with methods package code and data together, simplifying development and management of 
products. Specialized objects called state machines provide a directly-executable set of reactive 
actions, and can intrinsically coordinate together to perform sophisticated autonomy as an expert 
system. 

D. Spacecraft Telecommand Radio System: STRS 
Modern space radios are implemented in a software-defined fashion rather than as specialized 

hardware, using a CPU and software running at 
sufficient speed to perform processing on 
arriving signals in order to encode and decode 
data and manage hardware. Because of the 
presence of a processor and memory, these 
software-defined radios can host flight 
software of sufficient complexity to operate a 
mission. NASA's Spacecraft Telecommand 
Radio System (STRS) [15] is one set of 
standardized software specifications for such a 
radio, finding wide application in the arena of 
spacecraft communications. STRS explicitly 
provides for application hosting within the 
radio, making it an excellent candidate 
environment for executing sequencing, 
commanding, and specialized navigation 
needed for complex deep space missions. The 
STRS system is illustrated in Figure 5. 

STRS features a well-defined application programming interface accessible to a series of 
waveform applications which can be dynamically loaded and unloaded as needed at runtime, 
allowing the radio to be updated in-flight with modified and new capabilities. Applications 
interface to the radio hardware through a hardware abstraction layer (HAL), which in turn 
interfaces to the hardware either directly or via POSIX-compliant input/output drivers. STRS 
runs atop a real-time operating system like RTEMS[16]. 

III. Using the radio as an extension to the flight/ground interface 
Currently, a multi-mission MOS must incorporate a new spacecraft, the team can: 

1) Modify the MOS to accommodate a new and potentially very different command and 
sequencing paradigm, with associated cost and schedule risk 

2) Modify the flight software of the new spacecraft with a known sequencing capability, 
with associated cost, schedule risk, and performance risk 

 
Figure 5: STRS software architecture controlling 

radio and hosting waveform applications 
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Both of these approaches have disadvantages. 
Modifying the MOS requires mapping flight capabilities onto ground representations which 

may not adequately implement them, causing flight capabilities to be inaccessible to or poorly 
modeled for the operations team. Modifying the flight software may prove an undue burden on 
personnel, flight resources, and development processes. Differing priorities for costing and 
implementing the modifications may cause the flight and ground organizations to be at odds. 
Misunderstanding of functionality may lead to incorrect behavior of the end-to-end system that 
adds risk and requires time and resources to correct. Accurate schedule estimates for the work 
may be difficult to derive given the complexity of integration. 

Since every spacecraft requires a radio, and since modern software-defined radios using the 
STRS standard can host complex applications, a third option becomes possible: host the 
command and sequencing portion of the flight/ground interface within the radio itself. This 
leaves the host flight software and the ground data system unchanged, allows personnel to use a 
familiar sequencing capability, and requires little additional investment of time and money 
outside of defining mission-specific commands. In addition, since radios are frequently furnished 
by JPL to its vendor-built spacecraft, a simple means for integrating time-tested heritage 
sequence capabilities is provided by simply delivering a radio that already includes the desired 
software. 

A. Radio-hosted sequencing 
Figure 6 shows a flight 

software core and VML flight 
software integrated with an 
STRS implementation as it 
would be hosted in a suitable 
software-defined space radio. 
Two such radios have been 
developed by JPL: the 
Universal Space Transponder 
[18], and the Iris radio [19]. 
Other STRS-compatible radios 
should reach the market in the 
coming years, and could 
accommodate standardized 
flight / ground interface 
elements given sufficient 
unused resources, including 
CPU cycles, memory, and file 
system space. The flight 
software core could be any of a 
number of different available 
systems, including Core Flight System / Core Flight Executive [17] (an open source spacecraft 
flight software package provided by NASA) and VML 3 (provided by BSE). While STRS calls 
out RTEMS, it may also be possible to adapt the system to work with other real-time operating 
systems such as VxWorks. Hosting the command elements of the flight / ground interface in the 
radio could therefore allow a great deal of flexibility in selection of the software components to 
be hosted. 

 
Figure 6: STRS hosting flight software core and VML 3 
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The resulting command flow shown in Figure 7 ends up looking very much like the hardware 
command decoder of early space missions shown in Figure 2. Commands arrive onboard the 
spacecraft from the ground system. Immediate commands for the radio are interpreted within the 
radio software elements, and those intended for the host spacecraft are passed through to the 
CDH for interpretation. Sequences dispatch commands which are either routed to software 
elements in the radio or out to the CDH. Also shown is a return path of telemetry from the CDH 
for downlink, which also may be used to determine conditions governing logic within sequences. 

 
Figure 7: Command and telemetry flow of radio-hosted FGI command element 

 
With the command and sequencing element of the flight / ground interface in the radio, the 

overall system appears as in Figure 8. Implementation of the flight/ground system no longer 
requires extensive mission adaptation on the ground side, nor do vendor-provided elements of 
the flight system have to be altered to accommodate the standardized sequencing system. 

 
Figure 8: Sequencing element of the flight / ground interface hosted in the radio 

B. Radio-hosted service: automated navigation, trajectory calculation, and maneuver derivation 
In addition to sequencing, other services could be hosted in the radio. Once a flight software 

core is in place and using the STRS software infrastructure, the ability to interface to various 
services is greatly simplified. One such service is the AutoNav[7][8] software, built by JPL to 
perform on-board optical orbit determination, trajectory calculation, and maneuver derivation. 
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This sophisticated software could prove challenging to integrate into a vendor's flight software 
build, but can be easily accommodated within the STRS environment alongside VML and the 
flight software core. Figure 9 illustrates the inclusion of AutoNav. This type of service could 
prove to be a powerful incentive to missions to adopt onboard autonomy at low risk and low 
cost, thereby saving host missions money, decreasing personnel costs, and reducing mission risk. 

 

 
Figure 9: Radio-hosted VML sequencing with AutoNav 

IV. Potential host deep-space STRS radios 

C. Universal Space Transponder and Iris Radio 
Hardware for the Universal Space Transponder (UST) [18] and the Iris radio version 2 [19] 

appear in Figure 10. These two radios are both built around STRS and form the backbone of 
future transponder offerings from JPL. The UST is targeted at large spacecraft with high power 
transmission and high-speed data, and can operate in the UHF-band, S-band, X-band, and Ka-
band frequencies, either exclusively or in combinations. The Iris radio is targeted at small 
spacecraft, including those with a CubeSat form factor, and is currently available in the X-band 
and UHF-band frequencies. Iris is also commercially produced by the Spacecraft Dynamics Lab, 
a non-profit research corporation of the Utah State University Research Foundation. 

VML sequencing requires approximately 1.5 MB of memory for executable code, data, and 
sequence files. Various flight software cores and real-time operating systems may range in 
memory footprint from 2 MB on up. UST and Iris currently offer 384 MB (3 Gbits) and 2 MB of 
SRAM, respectively. While the current UST hardware should provide enough memory to 
support both its own internal operation and hosting external software, future expansion of the on-
board SRAM in Iris would enable it to serve as a host. 
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Figure 10: Universal Space Transponder (left) and Iris radio v. 2 (right) 
 

D. CCSDS Command routing 
The CCSDS standard for 

packetization and framing of 
spacecraft uplink products 
contains two routing features 
that would prove useful for 
radio-hosted sequencing: the 
virtual channel [20] and the 
application process identifier 
(APID) [21]. A virtual channel 
value between 0 and 63 
associates an arriving packet 
with a desired command 
destination. By convention on 
many JPL deep space missions, 
VC-0 is used for hardware 
commands to the radio, VC-1 
provides software commands 
for immediate execution, and 
VC-2 handles file uploads. For 
each virtual channel, an APID 
value of between 0 and 2039 is 

available in the packetization scheme to associate arriving command packets with applications 
that can react to those packets. These conventions are followed in the command routing 
technique described here. For instance, suppose a spacecraft is not already using VC-1 and VC-2 
for its own purposes. Figure 11 shows the arrival of packets on various virtual channels, with 
VC-0 packets resulting in setting of a discrete signal, VC-1 being forwarded to the internal 
command dispatcher within the radio, and VC-2 resulting in the deposition of files within the file 
system. 

 
Figure 11: Virtual channels and APIDs route radio commands, files  
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Each vendor spacecraft and 
associated instrumentation will 
have its own specification of VC 
and APID usage, requiring the 
radio usage of APIDs and 
spacecraft / instrument usage of 
VCs and APIDs be deconflicted. 
In cases where virtual channels 
are used in common between the 
radio and the CDH, the radio can 
be programmed to use specific 
APIDs that are not in use on the 
host CDH for its commands and 
file data on VC-1 and VC-2. 

Note that spacecraft commands 
implemented using opcode 
definitions provide another 
avenue to differentiate between 
radio commands and spacecraft 
commands. The radio command 

opcodes are chosen to deconflict them from the spacecraft commands, regardless of the APID 
and virtual channel on which the commands are delivered. Doing so requires the radio to 
examine each immediate command upon arrival or issuance from sequencing to make the 
evaluate / forward decision.  

Forwarding of command and file data from the radio into the spacecraft CDH is illustrated in 
Figure 12. Commands on VC-1 which are not intended for the radio are identified using APID or 
opcode values and forwarded out the serial link to the CDH as CCSDS packets. In a similar 
fashion, file data on VC-2, and all data on VC-3 through VC-63 is forward to the CDH. 

E. Telemetry reporting 
Downlink from the spacecraft includes telemetry produced by the CDH and telemetry 

produced by the operation of the radio and its applications. The radio can be configured to use a 
technique known as prechannelization, in which the format of a telemetry packet is variable, 
consisting of pairs of identifiers and values that are interpreted after receipt on the ground in 
order to extract telemetry. APID usage between the CDH and the radio can be easily deconflicted 
by reserving certain APIDs which are not used by the CDH as originating from the radio. 

It may be necessary to interpret a subset of the telemetry originating from the CDH in order to 
allow sequences running in the radio to react to spacecraft conditions. VML 3 allows reactive 
responses based on spacecraft conditions and keeps a mirror of reported telemetry items in its 
global variable list. The data flow of these items is illustrated in Figure 13. In cases where the 
overhead associated with extracting and interpreting telemetry items from every received 
CCSDS packets proves impractical due to limitations on available CPU and i/o resources, a 
specific report with a limited number of measurements may be sent to the radio from the CDH 
using a designated APID. 

 
Figure 12: Forwarding of spacecraft command and file data to CDH 
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V. Advantages of standardized radio-hosted flight/ground interface 
Every flight system has some kind of interface with the ground. As most deep-space missions 

are unique, parts of their flight software may also be unique. Without a standardized interface, 
each flight system will need to have a customized interface.  

For most missions, there is an existing ground software/hardware system that will be adapted 
to command and monitor the mission. In most of these ground systems, the sometimes-painful 
lessons learned from years of spacecraft operations have been built into software, processes, and 

procedures. This “corporate 
memory” is invaluable and must 
be maintained. While the 
ground system often evolves 
over many missions, either each 
new spacecraft design will 
entail changing the ground 
system, or each spacecraft must 
be designed to interface with 
the ground system as it stands. 
Systems that support a number 
of different missions 
concurrently can become 
inflexible, and changing them 
imposes risk.  
 This situation requires 
mission managers to have to 
make a difficult choice between 
changing the ground to match 
flight (slow and risky, possible 
risk to multiple missions), 
changing flight to match the 
ground (expensive and risky), 

or some combination of both. This often limits mission developers to only a few vendors with 
existing, well-understood interfaces. Migrating part of the flight-ground interface onboard puts 
much-needed flexibility back into the hands of the developers and operators.  

A. Lower cost to adapt to new mission 
Standardizing how the FGI is adapted to each new mission provides savings in both cost and 

risk. Much of the information needed by both flight and ground can be pre-planned and pre-
formatted, making a first-cut adaptation quick to create and inexpensive to implement. For 
example, command formats and a map of needed engineering telemetry could be pre-defined, 
with a map of APIDs created to match standard telemetry types and APID deconfliction routines 
scripted. A first cut adaptation for testbed use could be made in a matter of  hours once some 
limited spacecraft commands and telemetry are provided. Adjustments during integration and 
test can easily be made by adding new commands and telemetry items incrementally to the 
formats in use. From one mission to the next, a “library” of mission adaptations accumulates, and 
the non-recurring engineering cost virtually disappears. 

Using VML as the flight-ground interface system also allows development of mission-
independent MOS functions and ground system components, with low-cost adaptations for new 

 
  Figure 13: CDH sending normal telemetry to ground and 

engineering subset to sequencing 
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host spacecraft and payloads, and low-cost inclusion of autonomy features, even in flight. 
Moving the sequencing function from the CDH to the radio allows more straightforward 
adaptation to each mission. Rather than customizing to each spacecraft’s CDH flight software, 
adaptations need only address radio changes since the most recent mission, and the specific set of 
commands, sequence constructs, and telemetry of the new mission.  

Costs for adaptation drop from many work-years of software development and test under the 
traditional paradigm down to a low-level effort of adaptation management after a brief early 
period of adaptation definition. Prior missions provide typical examples for costing a 
traditionally adapted system. Assuming a mission features a file system onboard, between three 
and five work years is necessary for the uplink adaptation before launch using the traditional 
development methodology. Generally, the first year of cruise operations involves significant 
maintenance time, with additional maintenance required when science operations start. In 
contrast, embedding the FGI in the radio brings with it a standardized and tested software service 
infrastructure, and as such would require a fraction of a work year for a new mission. This 
creates a savings per mission of approximately six work years or more. 

B. Lower learning curve for personnel  
Standardized interfaces allow for standardized tools, training, and sharing of both 

development and operations personnel. Sharing of personnel for short-term “surges” in team size 
during parts of integration and test or launch/checkout is more manageable when shared staff are 
already fully versed in the tools and processes. Training of new staff speeds up since this training 
can occur in a range of venues, having  concepts shared among the missions. The focus of 
training for a mission becomes learning the differences among missions rather than first 
struggling with different concepts, tools, and processes.  

C. Reduced schedule risk for adaptation 
With a standardized interface pre-defined by the selection of a radio hosting VML, a specific 

mission adaptation can be defined quickly and safely. Well before any unique flight software is 
ready for testing, the flight-ground interface can be up and running in a testbed. This allows very 
early definition and testing of both the radio’s interface with spacecraft flight software using a 
simulation and the adaptation for the mission specifics. This also leads to the ability to simulate 
operations strategies while changes can still be made to the flight system design. [14] 

D. Lower barrier to entry for LEO and GEO providers to deep space 
 Past deep space missions have relied on highly capable and diversified spacecraft vendors to 

supply host spacecraft in support of challenging mission environments and specialized payloads. 
In response, vendors have built complex and customized flight software systems, and the MOS 
developers have created many custom features to interface with the missions. This has led to 
unique integration and test environments, unique ground systems, and highly specialized 
operations procedures. Few vendors have the capabilities or the business models to compete in 
this type of environment. 

By locating the FGI in the deep space radio, virtually any spacecraft vendor can provide 
spacecraft and participate in deep space missions. The only changes needed are a physical and 
data connection to the deep space radio and whatever modifications would otherwise be needed 
for the mission environment. Because of the availability of the UST and Iris deep space radios, 
many kinds of spacecraft can be included in deep space missions without extensive and 
expensive flight software modifications. These range among low-cost LEO spacecraft, more 
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capable GEO spacecraft, and high cost / high complexity spacecraft intended for other types of 
orbits such as for outer planets missions. Many vendors and scientific organizations lack an in-
house flight software customization capability: these vendors would be able to participate in 
deep space missions without the need for significant flight software changes.  

Organizations providing MOS services will also have lower barriers to participation. The 
standardized FGI in the radios allows their services to be independent of the flight software 
interfaces of the host spacecraft. Diverse and distributed operations organizations could then 
interact with a wide variety of spacecraft providers without having to develop a unique 
infrastructure. This has been demonstrated on JPL missions where instrument payload 
organizations successfully operate those instruments using their in-house operations systems and 
teams, maintaining independence from the host spacecraft and the JPL MOS. 

Mission development organizations, formerly exclusively government entities, are growing in 
diversity as well. Private groups, commercial companies, educational organizations, and 
consortia of any of these are now planning Earth orbiting missions and could soon attempt deep 
space missions. The ability to select spacecraft vendors, operations system providers, and 
payload providers from a broad and diverse pool and connect them inexpensively through a 
standardized flight/ground interface can enable such missions by keeping costs reasonable.  

VI. Conclusions 
The growing use of software defined radios, including the Iris and the Universal Space 

Transponder from JPL, provides a unique opportunity to simplify the flight/ground interface and 
standardize deep space operations. The presence of STRS within these radios furnishes an 
application hosting capability which can run complex sequencing software such as VML 3, and 
specialized navigation services including AutoNav. These capabilities would allow considerable 
automation standardization for a wide variety of deep-space missions, and standardize the 
flight/ground interface of these missions. Standardizing the FGI in this way yields cost and risk 
reductions, and presents a simple and convenient means for providing spacecraft which were 
originally designed for LEO and GEO with the operations capabilities and autonomy needed for 
accomplishing challenging deep space missions. 
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